• All
  • Cloud
    • Solutions
    • Virtualization
  • Data
    • Analytics
    • Big Data
    • Customer Data Platform
  • Digital
    • Digital Marketing
    • Social Media Marketing
  • Finance
    • Cost Management
    • Risk & Compliance
  • Human Resources
    • HR Solutions
    • Talent Management
  • IT Infra
    • App Management Solutions
    • Best Practices
    • Datacenter Solutions
    • Infra Solutions
    • Networking
    • Storage
    • Unified Communication
  • Mobility
  • Sales & Marketing
    • Customer Relationship Management
    • Sales Enablement
  • Security
  • Tech
    • Artificial Intelligence
    • Augmented Reality
    • Blockchain
    • Chatbots
    • Internet of Things
    • Machine Learning
    • Virtual Reality
Standardizing the Machine Learning Lifecycle

Standardizing the Machine Learning Lifecycle

Databricks
Published by: Research Desk Released: Jul 23, 2019

Successfully building and deploying a machine-learning model can be difficult to do once. Enabling other data scientists (or yourself) to reproduce your pipeline, compare the results of different versions, track what’s running where, and redeploy and rollback updated models, is much harder.